物联传媒 旗下网站
登录 注册
频率
  • 书接上回:了解到低频RF1D是采用电感耦合的方式进行通信,其典型工作频率是125KHz技术和134.2KH技术后。在本期小课堂阿库将为你讲讲低频RFD的应用场景与案例!
  • 低频主要采用电感耦合的方式进行通信,其工作频率范围为30kHz~300kHz。
  • 同轴转接头用于传输射频信号,其传输频率范围很宽,可达 50GHZ 或者更高,主要用于雷达、通信、数据传输以及航空航天设备。
  • RFID常用工作频率包括低频125kHz、134.2kHz.高频13.56MHz,超高频860~930MHz,微波2.45GHz,5.8GHz等。因为低频125kHz、134.2kHz,高频13.56MHz系统以线圈作为天线,采用电感祸合的方式,其工作距离较近,一般不超过1.2m,带宽在欧洲及其他地区限制为几千赫兹。但超高频(860~93Uh1Hz)和微波(2.45GHz,5.8GHz)可以提供更远的工作距离,更高的数据速率,更小的天线尺寸,因此成为RFID的热点研究领域。
  • 标签进入磁场后,接收阅读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag,无源标签或被动标签),或者主动发送某一频率的信号(Active Tag,有源标签或主动标签);解读器读取信息并解码后,送至中央信息系统进行有关数据处理。
  • 超高频无源 RFID 标签(UHF Passive RFIDTag)是指工作频率 在 300M~3GHz 之间的超高频频段内,无外接电源供电的 RFID 标签。
  • 工作在不同频段或频点上的电子标签具有不同的特性,本文详细介绍RFID不同工作频率的特性以及主要的应用领域。
  • 射频功率放大器的非线性失真会使其产生新的频率分量,如对于二阶失真会产生二次谐波和双音拍频,对于三阶失真会产生三次谐波和多音拍频。这些新的频率分量如落在通带内,将会对发射的信号造成直接干扰,如果落在通带外将会干扰其他频道的信号。
  • 现代通信技术、雷达技术、电子测量以及一些光电应用领域都要求高精度、高稳定度、高分辨率的射频正弦波信号。有别于传统的模拟射频振荡器方式,直接数字频率合成器DDS(Direct Digital Synthesizer)有着显着的优点:频率稳定度高、频率精度高、易于控制。
  • 随着物联网的发展,无线射频识别(RFID)技术越来越多的应用到工业现场中。RFID的英文全称为“Radio Frequency IDentificaTIon”,中文翻译为“无线射频识别”。它是在20世纪50年代诞生的一种无线识别技术,可以在不接触的情况下,利用无线电(radio)来进行身份识别。根据无线电频率的不同,RFID系统可以分成低频、高频、超高频及微波四种。
  • 发射时,把逻辑电路处理过的发射基带信息调制成的发射中频,用TX-VCO把发射中频信号频率上变为890M-915M(GSM)的频率信号。经功放放大后由天线转为电磁波辐射出去。
  • RFID的英文全称为“Radio Frequency IDentification”,中文翻译为“无线射频识别”。它是在20世纪50年代诞生的一种无线识别技术,可以在不接触的情况下,利用无线电(radio)来进行身份识别。根据无线电频率的不同,RFID系统可以分成低频、高频、超高频及微波四种。
  • TWT具有高频率和高功率特性,但可靠性、重量和所需的支持子系统使其不受欢迎。LDMOS可提供高功率,但工作频率低于5 GHz。GaAs MESFET的工作频率非常高,但低击穿电压将其功率范围限制在10 W左右。
  • 众所周知电子标签按照频率分类主要分为高频电子标签、低频电子标签,超高频电子标签,今天我们主要来了解超高频RFID电子标签的优点与应用。
  • 射频系统的工作频率是射频识别技术系统最基本的技术参数之一。工作频率的选择在很大程度上决定了电子标签的应用范围、技术可行性以及系统成本的高低。
  • RFID技术和基于RFID发展起来的NFC技术都是属于近场通讯的范畴,在物联网领域都有极大的应用。两者都基于电磁感应原理,利用无线射频信号对目标进行识别和通讯,读写距离是评估其系统的重要指标,而标签的谐振频率是影响这个指标的关键参数。
  • 本文提出了一种单面紧凑、可完全印制的无芯片RFID双极化标签的设计。该标签利用具有相同谐振频率且极化方向正交的“I”形贴片型半波偶极子谐振器,在双极化平面波激励下,同样的固定频带内被使用两次,从而使编码容量加倍,具有18位编码容量。该标签具有容量大、尺寸小、结构稳定等特点,适用于数据量大、对方向敏感,阅读方向固定的应用。
  • RF采样转换器可捕获高频信号和大带宽信号;但是,并非每种应用都能利用需要极高速采样的信号。就带宽或输出频率不过高的情况而言,利用RF采样转换器的高采样速率能力仍存在一大优势。
  • 射频电路指处理信号的电磁波长与电路或器件尺寸处于同一数量级的电路。此时由于器件尺寸和导线尺寸的关系,电路需要用分布参数的相关理论来处理,这类电路都可以认为是射频电路,对其频率没有严格要求,如长距离传输的交流输电线(50或60Hz)有时也要用RF的相关理论来处理。
  • FID技术有很多种,频率从125KHz到5.8GHz,标签分有源和无源,还有双频芯片及有源无源组合系统等,每一种技术都有不同的特点,所以要根据应用的需求选择不同的技术,同时由于它是一种无线通讯技术,容易受到空中的各种无线信号的干扰和空间环境的影响,所以它的应用效果是和现场空间环境有关的,很难有一个统一不变的效果指标,因此,针对不同应用环境的应用技术研究是必不可少的,这就决定了RFID技术不是一下子就能够迅速普及的,它需要有一个不断探索和积累的过程。
  • RFID主要由阅读器和应答器两大部分组成。阅读器(如图1)是数据捕获系统,内含一个与应答器相配合的耦合元件。应答器(如图2)是数据载体,内含一个微型芯片和一个天线线圈组成的耦合元件。
  • 由于超高频RFID的接收和发射频率相同,读卡器结构基本为零中频结构。零中频结构的接收机射频前端没有选择滤波器,对邻近频率的信号抗干扰能力很弱。我国在《800/900 MHz频段射频识别(RFID)技术应用规定(试行)》中规定的跳频间隔为250 kHz,这对零中频结构的RFID读卡器在多询问机环境下工作是一个很大的技术难点。所以,在现阶段的多询问机环境下工作的UHF RFID读卡器,基本是工作于时分复用方式。在读卡器中加入单刀多掷开关(Single Pole 4Throw,SP4T),本机轮询4个天线,可以取代另外的3个读卡器,降低整个系统成本。
  • 无线射频识技术是利用射频信号来识别物体的自动识别技术.RFID系统由电子标签(包括芯片和标签天线)、阅读器(含阅读器天线)和后台主机组成。当前,射频识别工作频率包括频率为低频(125KHz、134KHz)、高频频段(13.56MHz)、UHF超高频段(860~960MHz)和 2.45GHz以上的微波频段等。
  • 一套完整的RFID系统,是由阅读器(Reader)与电子标签(TAG)也就是所谓的应答器(Transponder)及应用软件系统三个部份所组成,其工作原理是Reader发射一特定频率的无线电波能量给Transponder,用以驱动Transponder电路将内部的数据送出,此时Reader便依序接收解读数据,送给应用程序做相应的处理。
  • 在RF装置中,工作频率增加到微波区域的时候,天线与标签芯片之间的匹配问题变得更加严峻。天线的目标是传输最大的能量进出标签芯片。这需要仔细的设计天线和自由空间以及其相连的标签芯片的匹配。本文考虑的频带是435MHz, 2.45 GHz 和5.8 GHz,在零售商品中使用。
  • RF(射频)专指具有一定波长可用于无线电通信的电磁波。电磁波可由其频率表述为:KHz(千赫),MHz(兆赫)及GHz(千兆赫)。其频率范围为VLF(极低频)也即10-30KHz至EHF(极高频)也即30-300GHz。
  • 针对目前RFID系统工作频率多样,各类标准众多且差距较大,不适合多种标签同时应用的情况,提出了基于软件无线电及LabVIEW 设计RFID阅读器的思想。通过加载不同的软件代码,仿真阅读器可以实现对不同频段,符合不同标准的RFID标签进行读写。通过与标准阅读器的读取结果进行比对,仿真阅读器实现了对RFID标签携带信息的读取,节约了需要配置各种不同类型阅读器的成本。
  • 针对频谱特征法在设计无芯片标签中面临的编码容量与标签尺寸的矛盾问题,提出了一种新型无芯片标签结构。设计的标签由介质集成波导和位于表面贴片上的互补分裂环构成。标签谐振频率可通过调节互补分裂环内外环的开口角度实现,其中外环负责大范围的频率粗调,内环用于小范围的频率细调。标签工作于4 GHz~6 GHz频率范围,尺寸为25 mm×15 mm,编码密度高达4.86 bit/cm2。通过仿真验证了与理论分析的一致性,相比传统的无芯片标签,该结构可以在不增大标签尺寸的前提下提高编码容量,同时介质集成波导为标签提供了高选择性,使标签保持了较高的频谱分辨率。
  • Q值一般统称品质因数,它是衡量一个元件或谐振回路性能的一个无量纲单位。简单地说是理想元件与元件中存在的损耗的比值。这个元件可以是电感、电容、介质谐振器、声表面波谐振器、晶体谐振器或LC谐振器。Q值的大小取决于实际应用,并不是越大越好。例如,如果设计一个宽带滤波器,过高的Q值如果不采取其他措施,将使带内平坦度变坏。在电源退耦电路中采用LC退耦应用时高Q值的电感和电容极容易产生自谐振状态,这样反倒不利于消除电源中的干扰噪声。反过来,对于振荡器我们希望有较高的Q值,Q值越高对振荡器的频率稳定度和相位噪声越有利。
  • Melexis公司的MLX90132是13.56MHz全集成的多协议NFC/RFID收发器,可处理亚载波频率106kHz~848kHz,高达848kbps,双路驱动器架构把外接元件数减少,能向合适的天线负载提供高达70mW的RF功率。器件和ISO/IEC 18092 (NFC),ISO/IEC 14443 A1与B2, ISO/IEC 15693以及ISO/IEC 18000-3 模式1兼容,主要用在汽车接入和起动, 汽车发动机防盗,汽车诊断和汽车租赁。
  • 近日,德国慕尼黑工业大学领导的科研团队首次成功地采用尺寸只有几个纳米的等离激元微型天线,在芯片上生成频率达10THz超短电脉冲,然后通过芯片运行这些电脉冲,并以一种可控的方式读取它们。
  • 针对传统输变电设备在线监测系统难以满足故障定位精确、多参数集中监测的现状, 提出一种新型输变电设备在线监测系统架构, 并重点研究了用于状态监测的智能电子装置( IED) 。设计了一种基于射频识别( RFID) 技术的状态监测 IED, 主要由微处理器、温度传感器、电流传感器、电压传感器和一种有源 RFID 芯片构成。仿真与测试结果表明: IED 天线回波损耗约为 - 13. 1 dB, 载波频率为 865. 8 MHz 时,IED 最大读写距离为 18 m, IED 驱动电流和工作电流分别为 520, 210 μA, 性能优于 SL9000A。