物联传媒 旗下网站
登录 注册
电路设计
  • 在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。
  • 在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折衷处理。
  • 本文设计了一个新的射频电路设计性实验项目———可用于无人机高度测量的毫米波雷达微带天线的设计与实现。
  • 如果模拟电路(射频)和数字电路单独工作,可能各自都工作良好。但是,一旦将二者放在同一块电路板上,使用同一个电源一起工作,整个系统很可能就不稳定。
  • RFID常用工作频率包括低频125kHz、134.2kHz.高频13.56MHz,超高频860~930MHz,微波2.45GHz,5.8GHz等。因为低频125kHz、134.2kHz,高频13.56MHz系统以线圈作为天线,采用电感祸合的方式,其工作距离较近,一般不超过1.2m,带宽在欧洲及其他地区限制为几千赫兹。但超高频(860~93Uh1Hz)和微波(2.45GHz,5.8GHz)可以提供更远的工作距离,更高的数据速率,更小的天线尺寸,因此成为RFID的热点研究领域。
  • 超高频无源 RFID 标签(UHF Passive RFIDTag)是指工作频率 在 300M~3GHz 之间的超高频频段内,无外接电源供电的 RFID 标签。
  • 新一轮蓝牙设备、无绳电话和蜂窝电话需求高潮正促使中国电子工程师越来越关注RF电路设计技巧。RF电路板的设计是最令设计工程师感到头疼的部分,如想一次获得成功,仔细规划和注重细节是必须加以高度重视的两大关键设计规则。
  • 做了多年的RF研发工作,在从事RF芯片的支持工作也有7年之久,对于RF电路的设计经验,在这里和大家一起分享一下,希望以下浅谈的内容对做RF设计工作的工程师会有一点帮助,我们闲话少说,直接进入正题。
  • RF电路设计的主要困难之一是保持天线和收发器之间的良好匹配。在实验室中调整系统可能很方便,但实验室中的条件很少反映系统在现实世界中会遇到的情况。安装后,系统性能会受到环境条件的极大影响,例如设计与金属或水的接近程度。
  • 传统的超高频RFID读写模块一般都会对天线驻波比较敏感,当天线回波过大时将导致发射机输出功率泄漏到接收机中能量较多而引起阻塞现象,进而使读写器性能恶化。在此描述了一种新型超高频读写模块的电路设计,通过在天线与耦合器之间嵌入一种闭环可调谐匹配网络,有效解决了天线驻波失配情况下导致接收机性能蜕化的现象。实验结果证明采用这种新型模块的读写器无论从读写距离还是多标签处理性能上都获得了较大提升,达到了预期的效果。
  • 应答器设计的成本依赖于几个因素,而不仅仅是硅的成本。事实上,芯片制造工艺的成本(就其复杂性和成熟程度与良率而言)一般可以由电路设计师来控制。根据经验,当裸片面积超过1mm2时,用于供应链应用的RFID的成本开始下降。
  • 工作在125或134kHz低频(LF)或者13.56MHz高频(HF)范围内的电感回路无源RFID系统,其工作距离仅限于大约1m的范围。UHF RFID系统工作在860至960MHz以及2.4GHZ的工业科学医疗(ISM)频段。其具有更长的工作距离,对无源标签而言典型工作范围为3至10m。标签从阅读器的射频信号接收信息和工作能量。如果标签在阅读器的范围内,就会在标签的天线上感应出交变的射频电压。该电压经过整流后为标签提供直流(DC)电源电压。通过调制天线端口的阻抗来实现标签对阅读器的响应。这样一来,标签将信号反向散射给阅读器。
  • 阅读器主要由控制单元、高频收发模块、天线以及其他与后台设备相连的接口组成。应答器,又叫作标签,是RFID读取数据的来源,主要由天线和微电子芯片组成。RFID系统的关键部分是阅读器,实现阅读器的核心技术是接收电路。本文主要分析和构造了UHF无源RFID阅读器接收电路。
  • 巴伦(Balun)也称平衡转换器,是微波平衡混频器、倍频器、推挽放大器和天线馈电网络等平衡电路布局的关键部件,可以说是无线局域网射频前端电路设计的一项关键技术,直接影响着无线通信的性能和质量。而差分天线馈线的主要任务就是高效率的传输功率,同时要保证对称阵子的平衡馈电。而在超短波频段,如果采用平行双导线做其馈电,虽然能保证这种平衡性,但由于其开放式的结构,将会产生强烈的反射,为防止电磁能量的漏失和不易受气候和环境等因素的影响,馈线通常采用屏蔽式同轴电缆,但如果直接与天线端相连,将会破坏天线本身的对称性。这种不平衡现象不仅改变了天线的输入阻抗匹配,而且使天线方向图发生畸变。
  • RF(射频)专指具有一定波长可用于无线电通信的电磁波。电磁波可由其频率表述为:KHz(千赫),MHz(兆赫)及GHz(千兆赫)。其频率范围为VLF(极低频)也即10-30KHz至EHF(极高频)也即30-300GHz。
  • AMR传感器节点基本电路如图所示。电源部分由TI公司的APL5312-33起到LDU功能,电源输入电压为4.2 V,输出为3.3 V。磁场强度检测使用MMC2122MG AMR传感器,该传感器具有体积小、寿命长、灵敏度高、能耗低和稳定性等特点,可广泛用于电子指南针、GPS导航、位置感知、车辆检测和磁力测定。
  • 传统的嵌入式温度传感器利用三极管和 ADC 来实现,本文提出了一种利用两种不同温度系数材料作为传感,采用共享电容的双路环形振荡器来实现温度传感器的技术,该温度传感器有功耗低,面积小,精确度高的特点。
  • 针对RFID标签生产ACA热压固化模块,设计了一套多路温度控制系统方案。硬件上以C8051F020单片机为核心,针对硬件电路的各功能模块,包括温度采集电路、加热驱动电路、单片机电路等进行了设计。同时在软件上,进行了温度数据采集以及滤波算法的实现,并采用积分分离式PID控制加热模块。经温度试验表明,系统具有高精度和良好的稳定性;同时移植于RFID标签生产设备,进行批量生产典型UHF标签9662的实验数据表明,标签产品良品率达到99.85%以上,一致性与稳定性满足要求,适于标签的批量生产。
  • 针对现有汽车门禁系统和胎压监测系统相互独立,硬件冗余和生产成本高的问题,提出了一种基于射频识别技术的汽车安全防盗系统的设计方案。在射频通信上,该系统采用434 MHz 的UHF 频段与125 kHz 的LF 频段相结合的方法,实现了系统胎压监测、遥控门锁和发动机防盗锁止等功能。
  • 粮食的安全存储是关系到国计民生的战略大事,科学保粮具有重要的社会意义与经济价值。粮仓监控系统主要完成对粮食温度、湿度和气体浓度等参数的采集、存储和向监控中心传送数据以及执行监控中心的指令等功能。传统的粮仓监控系统中粮仓与监控中心大多采用RS-485(9, $14.5000)等有线连接的数据通信方式,使得系统抗干扰差、连线繁多、扩展困难;当一个节点出现问题时还会影响整个系统,不利于粮仓的监控与管理。为此,本文给出了一种基于射频技术的粮库无线监控系统。
  • NFC即近距离无线通信。是由恩智浦公司发起,由诺基亚、索尼等着名厂商联合主推的一项无线技术---在单一芯片上结合感应式读卡器、感应式卡片和点对点的功能,能在短距离内与兼容设备进行识别和数据交换。NFC具有双向连接和识别的特点,工作于13.56MHz频率范围,作用距离接近10厘米。
  • 在当前的许多RFID应用中,设备制造商不一定能决定客户采用什么收发器,特别是收发器芯片。因此,为了最大程度地提高自己在某个特定项目中中标的机会,设备制造商必须提供这样的读卡器,要么它能支持市场上尽可能多的收发器芯片,要么它本身至少是比较容易定制的。
  • 介绍了一种基于射频识别技术的电动自行车智能防盗系统,给出了硬件的详细电路设计图和功能说明。系统由射频读卡模块、单片机控制模块、串口通信模块、电池模块组成。该系统使用射频卡取代了传统的钥匙,通过射频卡的一对一识别来启动电动车,并对电动车的电池外部电路进行改造,使得只有在射频卡得到识别时才打开电子开关正常向电动车控制器进行供电。同时电动车电池供电电路分为单片机供电和控制器正常供电两组,大大提高了智能系统的实用性。
  • 根据ISO/IEC 14443一A协议.完成无源电子标签数字集成电路的设计及其功能测试,实现了对芯片面积、速度和功耗之间较好的平衡。结果表明,在采用中芯国际的0.35 μm工艺条件下,所研制芯片面积为36 877.75μm2,功耗为30.845 8 mW,可完全满足协议对标签的性能要求。
  • 本文将介绍一种SAW RFID阅读器的信号处理电路设计及其软件设计。
  • 本文基于ISO/IEC 18000-6C标准,给出了UHF无源电子标签芯片模拟电路的设计,设计结果表明电路具有很高的整流效率,满足了设计要求。下一步的研究将进行标签芯片的版图设计和流片,用实际测试结果来进一步验证设计的有效性。
  • 传统的超高频RFID读写模块一般都会对天线驻波比较敏感,当天线回波过大时将导致发射机输出功率泄漏到接收机中能量较多而引起阻塞现象,进而使读写器性能恶化。在此描述了一种新型超高频读写模块的电路设计,通过在天线与耦合器之间嵌入一种闭环可调谐匹配网络,有效解决了天线驻波失配情况下导致接收机性能蜕化的现象。实验结果证明采用这种新型模块的读写器无论从读写距离还是多标签处理性能上都获得了较大提升,达到了预期的效果。
  • 1 引 言   射频识别(RFID)技术作为一种新兴的自动识别技术,近年来在国内外得到了迅速发展。目前,我国开发的RFID产品普遍基于中低频,如二代身份证、票证管理等。在超高频段我国自主开发的产品较少,难以适应巨大的市场需求以及激烈的国际竞争。超高频(UHF)标签是指工作频率在860~960 MHz的RFID标签,具有可读写距离长、阅读速度快、作用范围广等优点,可广泛应用于物流管理、仓储、门禁等领域。为适应市场需求,本文以EPC C1G2协议为主,ISO/IEC18000.6为辅,设计了一种应用于超高频标签的数字电路。   2 UHF RFID标签的工作原理   射频识别系统通常由读写器(Reader)和射频标签(RFID Tag)构成。附着在待识别物体上的射频标签内存有约定格式的电子数据,作为待识别物品的标识性信息。读写器可无接触地读出标签中所存的电子数据或者将信息写入标签,从而实现对各类物体的自动识别和管理。读写器与射频标签按照约定的通信协议采用先进的射频技术互相通信,其基本通讯过程如下。   (1)读写器作用范围内的标签接收读写器发送的载波能量,上电复位;   (2)标签接收读写器发送的命令并进行操作;   (3)读写器发出选择和盘存命令对标签进行识别,选定单个标签进行通讯,其余标签暂时处于休眠状态;   (4)被识别的标签执行读写器发送的访问命令,并通过反向散射调制方式向读写器发送数据信息,进入睡眠状态,此后不再对读写器应答;   (5)读写器对余下标签继续搜索,重复(3)、(4)分别唤醒单个标签进行读取,直至识别出所有标签。   3 UHF RFID标签的结构及系统规格   UHF RFID标签的示意图如图1所示,由模拟和数字两部分组成。模拟电路主要包括天线、唤醒电路、时钟产生电路、包络检波电路、解调电路和反射调制电路;数字部分主要实现EPC通信协议,识别读写器发出的命令并执行,如实现多标签阅读时的防冲突方法、执行读写器发送的读写命令、实现读写器和标签的通讯过程以及对输出数据进行编码等。协议规定的标签系统规格如表1所示。      图1 UHF RFID标签的示意图   表1 UHF RFID标签系统规格      4 标签数字电路的设计方法   4.1 电路的整体系统设计   经过对协议内容的深入研究,本文采用Top.down的设计方法,首先对电路功能进行详细描述,按照功能对整个系统进行模块划分;再用VHDL硬件描述语言进行RTL代码设计并进行功能仿真;功能验证正确后,采用EDA工具,
  • 本文提出了基于商用0.18μm CMOS工艺的EPC Global Class-1 Generation-2 UHF RFID标签电路设计。
  • 本文介绍了SAW RFID阅读器的信号处理电路设计与软件设计过程,通过实验表明,采用FIFO作为ADC与MCU之间的桥梁,起到很好的数据缓冲作用,降低了对MCU性能的要求,基于C8051F131设计的RFID阅读器的信号处理电路,具有结构简单,成本低,容易实现等特点。
  • 本设计采用无线射频与GPRS相结合的方式,终端监测温度和烟雾浓度,并通过无线射频发送到基站,基站通过MC55与监控中心通信,将终端采集回的数据打包发送至监控中心,并可接受监控中心的指令,对每个终端进行远程控制,从而可以实现远程对林火的监控。
  • 本文介绍了SAW RFID阅读器的信号处理电路设计与软件设计过程,通过实验表明,采用FIFO作为ADC与MCU之间的桥梁,起到很好的数据缓冲作用,降低了对MCU性能的要求,结构简单,成本低,容易实现。