物联传媒 旗下网站
登录 注册
射频前端
  • 本方案接收机射频前端系统基于软件无线电理论来设计和实现,以达到建立一个通用化、标准化、模块化的接收机射频前端系统仿真平台的目标。
  • 射频前端(RFFE, Radio Frequency Front-End)芯片是实现手机及各类移动终端通信功能的核心元器件,全球市场超过百亿美金级别。
  • 5G时代,终端成为各行业关注的焦点。终端是最接近用户的部分,直接影响用户的5G体验
  • 根据 Yole 数据显示,2017 年手机射频前端中射频 PA 市场规模约 50 亿美元,在整个射频前端中价值量占比 35%,仅次于滤波器,也是射频前端价值量最高的单类型芯片。
  • 本文介绍的射频前端 MMIC 将在未来的 28GHz 频段 5G 系统中发挥关键作用。
  • 手机通信模块主要由天线、射频前端、射频收发、基带构成,其中射频前端是指介于天线与射频收发之间的通信元件,是终端通信的核心组成器件。
  • 在过往的很多报道中提过,5G 的到来会给射频前端带来巨大的影响。
  • 超高频射频识别(UHF RFID)系统已广泛应用于资产管理、服装零售等领域。
  • 5G智能手机的市场反应能力在这一个新的无线技术的转型初期是前所未有的,与之前的4G LTE演进不同,更多的手机厂商会第一时间将新设备提供给客户;不仅是关键的调制解调器套片与射频前端(RFEE)元器件在设计周期的早期阶段就可以提供给厂商,还因为这些解决方案都是完整的“调制解调器到天线”设计,从而进一步加快初代5G智能手机投放市场的速度。
  • 终端设备的无线通信模块主要分为天线、射频前端模块(RF FEM)、射频收发模块、以及基带信号处理器四部分。其中射频前端是无线连接的核心,是在天线和射频收发模块间实现信号发送和接收的基础零件。
  • 射频前端即RadioFrequencyFront-End,简称RFFE,是天线和射频收发机之间的射频电路部分。通俗的理解方式就是靠近天线部分的设备就是射频前端。
  • 现代民用及军用设施使用电子设备繁多,电磁环境复杂,相互干扰严重。一般地,车、船和飞机上的通信设备收发机都集成在一起。以短波通信设备为例,发射机的残余信号在接收机输入端产生的电平达120dBμV(即13dBm)或更高。而接收机所需接收的微弱信号电平可能仅-6~0dBμV(即-117~-113dBm)。
  • 由于超高频RFID的接收和发射频率相同,读卡器结构基本为零中频结构。零中频结构的接收机射频前端没有选择滤波器,对邻近频率的信号抗干扰能力很弱。我国在《800/900 MHz频段射频识别(RFID)技术应用规定(试行)》中规定的跳频间隔为250 kHz,这对零中频结构的RFID读卡器在多询问机环境下工作是一个很大的技术难点。所以,在现阶段的多询问机环境下工作的UHF RFID读卡器,基本是工作于时分复用方式。在读卡器中加入单刀多掷开关(Single Pole 4Throw,SP4T),本机轮询4个天线,可以取代另外的3个读卡器,降低整个系统成本。
  • 巴伦(Balun)也称平衡转换器,是微波平衡混频器、倍频器、推挽放大器和天线馈电网络等平衡电路布局的关键部件,可以说是无线局域网射频前端电路设计的一项关键技术,直接影响着无线通信的性能和质量。而差分天线馈线的主要任务就是高效率的传输功率,同时要保证对称阵子的平衡馈电。而在超短波频段,如果采用平行双导线做其馈电,虽然能保证这种平衡性,但由于其开放式的结构,将会产生强烈的反射,为防止电磁能量的漏失和不易受气候和环境等因素的影响,馈线通常采用屏蔽式同轴电缆,但如果直接与天线端相连,将会破坏天线本身的对称性。这种不平衡现象不仅改变了天线的输入阻抗匹配,而且使天线方向图发生畸变。
  • RFID系统的基本工作原理是:标签进入读写器发射射频场后,将天线获得的感应电流经升压电路后作为芯片的电源,同时将带信息的感应电流通过射频前端电路变为数字信号送入逻辑控制电路进行处理,需要回复的信息则从标签存储器发出,经逻辑控制电路送回射频前端电路,最后通过天线发回读写器。
  • 射频识别(RFID)是物联网感知环节识别物体、采集信息的重要手段[1-2]。近年物联网被世界各国作为战略性新兴产业加以培育和发展,RFID已经成为通信和电子领域的一个关键技术,引起了广泛关注。振荡器是RFID射频前端的关键模块,低功耗和小体积是RFID的两个重要性能指标[3-4]。但目前射频振荡器主要采用压控振荡器(VCO)[5],由于VCO同时采用晶体管和二极管两个有源器件,很难满足RFID对低复杂度的要求,需要针对RFID研究新的振荡器设计方法。
  • 在超高频段,ISO18000-6标准中的6B多用于交通领域,而6C主要用于物流、生产管理和供应链管理领域,二者都是目前常用的标准协议。鉴于此,提出一种同时支持ISO18000-6B和6C双协议超高频RFID读写器的设计。该设计采用基于专用芯片AS3992的射频前端模块和以LM3S8962为主的控制模块,搭载μC/OS-Ⅱ系统,通过程序进行串口初始化、AS3992驱动、防碰撞算法、CRC校验和寄存器的读写操作等实现对电子标签的远距离操作。本系统具有开发简单、功耗低、体积小、成本低的特点。
  • 在此针对ISO18000-6C/B标准,研究和分析了UHF RFID无源标签芯片的系统组成以及模拟射频前端的电路方案。基于Cadence Spectre设计仿真平台和TSMCO.18μm CMOS混合信号工艺,对模拟射频前端的整流电路、稳压电路、ASK调制/解调电路、上电复位电路、时钟产生电路等核心模块进行了设计与仿真,通过MPW项目流片实现。最后,给出了芯片各模块的测试结果。
  • 实现了一种基于MP300读卡器电路的射频前端电路仿真模型。通过对读卡器的发射线圈及场强标定线圈等进行分析和建模,结合ISO14443对RFID模拟前端电路的要求,搭建了与测试条件高度吻合的仿真电路模型。模型中射频发射线圈、场强标定线圈及标签线圈之间的电磁耦合用耦合系数k表示。经测试验证,该仿真模型在1.5 A/m~7.5 A/m场强下对待测卡片电源获取、时钟获取、信号解调、信号调制及信号串扰等方面的仿真结果与实际测试结果的一致性较好,能帮助模拟前端芯片设计快速收敛至设计目标。
  • 利用Xilinx的FPGA设计了一个FPGA原型验证平台,用于无源高频电子标签芯片的功能验证。主要描述了验证平台的硬件设计,解决了由分立元件实现模拟射频前端电路时存在的问题,提出了FPGA器件选型原则和天线设计的理论模型。同时,给出了验证平台的测试结果,通过实际的测试证明了验证平台设计的正确性和可靠性。该验证平台有力地支撑了RFID芯片的功能验证,大大提高了标签芯片的投片成功率。
  • 使用分立元件搭建的新型超高频读写器方案设计灵活,相比于一些读写器使用集成芯片,这种方法可以大大缩减设计成本,且其性能毫不逊色于市面上大多数读写器。读写器系统包括了软件和硬件两部分,在这里重点讲述其硬件电路的设计并同时介绍软件系统的实现。系统的硬件主要包含了基带信号的处理部分和射频前端,在处理器上配套运行的软件系统主要包括了协议处理、编解码、硬件系统的控制以及与上位机的通信。
  • 提出了一种基于ISO/IEC15693 协议的标签芯片编解码系统设计的实现方法,使编解码更加完整准确。采用Verilog HDL建立RTL模型,用ModelSim进行功能仿真,并在Altera DE2-115与射频前端搭建的平台上进行了FPGA验证。最后不仅功能验证正确,而且比协议中要求的识别凹槽宽度范围广,处理更加灵活,同时减小了射频前端模拟解调的压力。对其他编解码系统的实现也有一定的借鉴意义。
  • 提出一种新的基于nRF2401射频芯片和MSP430单片机的腕带式有源电子标签设计,包括硬件匹配电路设计、天线设计以及软件编程设计。该有源电子标签工作于2.45GHz,采用内设丰富且功能强大的无线收发模块nRF2401作为射频前端,外围电路极少,满足腕带式电子标签体积小的设计要求;采用低功耗高性能的MSP430单片机作为微控制器,数据处理速度快并且兼顾低功耗的要求。测试结果证明,该标签整体性能稳定,抗干扰能力强,工作距离可达70m。
  • 一般来说,整个无线通信IC依功能可以分成三部分:首先为负责接收/发送射频信号的射频IC(Radio Frequency IC),此部分属于射频前端,为纯粹的模拟电路设计;其次为负责二次升/降频与调制/解调功能的中频电路(IF IC),以及与锁相回路(PLL)、频率合成器(Synthesizer)等组件,目前此段多属于模拟/数字的混和模式(mixed mode)的电路;最后则是负责A/D、D/A、信号处理器及CPU等纯数字部分的基频IC(Baseband IC)。
  • 由于超高频RFID的接收和发射频率相同,读卡器结构基本为零中频结构。零中频结构的接收机射频前端没有选择滤波器,对邻近频率的信号抗干扰能力很弱。我国在《800/900 MHz频段射频识别(RFID)技术应用规定(试行)》中规定的跳频间隔为250 kHz,这对零中频结构的RFID读卡器在多询问机环境下工作是一个很大的技术难点。
  • 2.4GHz工业 科学 医疗设备(ISM)是全世界公开通用使用的无线频段,蓝牙( Bluetooth)、 Wi-Fi、 ZigBee等短距离无线数据通信均工作在2.4GHz ISM频段。
  • 无线识别(RFID,Radio Frequency Identification)技术即将成为产业的关键技术之一,除了对现有的产业带来正面的影响外,还可能为行动通讯带来新的商机。本文概括的介绍了现行RFID的系统架构以及相关应用,并且以芯片中心的标签芯片为例子,介绍EPCglobal Class 1 Gen. 2标签的射频前端架构的设计。
  • 本文研究了直接下变频接收机的原理和实现方案,并成功的用软硬件平台对其实现。本文的创新点在于成功的实现了直接下变频接收机,在运用锁相环电路实现2.4G本地振荡信号,试验结果表明在2.4G高频之下锁相环有锁定时间短,相位噪声小,性能稳定等优点。同时说明了实际工程中需要注意的问题和克服直接下变频接收机固有缺陷的途径,实测结果表明接收机性能良好,指标都达到了系统设计要求。