物联传媒 旗下网站
登录 注册
RFID世界网 >  新闻中心  >  物联网新闻  >  正文

成长的烦恼:2018 物联网产业分布展望

作者:Matt Turck
来源:全球物联网观察
日期:2018-02-25 15:58:30
摘要:对于物联网的拥护者来说,过去这一年到一年半的时间应该经常会让他们感觉到沮丧。物联网到现在本应已经发展的十分强大,但事实却是,像初创企业失败以及安全问题令人担忧等报道内容一直笼罩着这个行业。思科最近发布了一份(有争议性的)研究报告,其中预计在所有的物联网项目中,有 75% 的项目是以失败告终。物联网这一流行词汇的光彩在过去的一年也确实黯淡了一些,很容易就被 AI 和比特币的光芒所遮盖。

4.webp_副本.jpg

  随着 AI 技术的加速、连接方面的重大进展以及大型云供应商专用物联网产品的推出,物联网发展所需的基础设施部分已经逐渐到位。我们很快就会发现物联网朝着全球互联的物理世界这一方向呈现出指数级加速发展趋势。

  对于物联网的拥护者来说,过去这一年到一年半的时间应该经常会让他们感觉到沮丧。物联网到现在本应已经发展的十分强大,但事实却是,像初创企业失败以及安全问题令人担忧等报道内容一直笼罩着这个行业。思科最近发布了一份(有争议性的)研究报告,其中预计在所有的物联网项目中,有 75% 的项目是以失败告终。物联网这一流行词汇的光彩在过去的一年也确实黯淡了一些,很容易就被 AI 和比特币的光芒所遮盖。

3.webp_副本.jpg

  有趣的是,物联网其实一直保持着不可阻挡的前进之势。2017 年很有可能是物联网设备(包括可穿戴设备、互联汽车和机器等)数量超过手机的一年。全球物联网消费支出不断增长并呈加速之势,据 IDC估计,2017 年全球物联网总支出为 8000 亿美元,较去年同比增长 16.7%。

  事实上,物联网生态系统的各个部分并非以同样的速度在发展,因此最终物联网也就变成了覆盖几个不同行业,而不是一个行业的状态。但是,物联网世界有共同的原则(从物理世界提取和分析数字数据)以及共同的特征(软件和硬件的结合),面临着同样的机会(个性化、智能以及实时服务)和挑战(连接性和安全性)。除此之外,像家庭自动化、商用无人机、工业机械或是自动驾驶汽车这些不同的领域也会受不同行业动态的影响。

  我们现在对于物联网行业的一个总体看法是:物联网正在经历青春期发展阶段,很多东西在不同的领域建立起来,可能并非所有的东西看上去都很漂亮或者都表现的很好,但是很多这都是基础性的成长过程。

  热门趋势和主题

  AI无处不在

2.webp_副本.jpg

  物联网始终致力于创造“智能”物体—从物理世界获取数据并且从中获得更多的见解,这显然没什么错,但最终的重点在于根据数据信息采取行动,理想情况下是以一种自动、实时并且智能的方式来进行,而这正是 AI 的功能所在。

  2017 年,AI 在主流集体意识中得以爆发,这也是我们在 2017 年大数据、AI 领域及其他领域广泛探讨的一种趋势。现在,AI 在物联网对话中的角色正如在其他许多行业一样,已经成为它们非常重要的一个组成部分。

  在面向消费者的物联网产品中,最让消费者感到振奋的领域大都是以 AI 为核心技术。语音平台毫无疑问是消费级物联网产品的亮点之一,亚马逊 Alexa 和 Google Assistant(以及苹果、三星、腾讯、阿里巴巴和其他加入者)已经就此展开了激烈的角逐。显而易见,这场竞争的重点并不在于销售硬件产品,亚马逊是想在包括 Sears、Kenmore 和各种可穿戴设备或家庭自动化产品(包括安全摄像头Canary)在内的第三方硬件上部署 Alexa。最终的目标是要积累海量的数据,建立数据网络效应来不断完善人工智能。如果语音真能成为“未来的用户界面”,那谁拥有最强的 AI 技术,谁就能赢得这场竞争。

1.webp_副本.jpg

  同样,在 2017 年获得了大量关注,吸引了大量投资的自动驾驶汽车领域(预计 2018 年将持续这一趋势)从根本上来说也是 AI 的游戏。虽然相比目前的夸大其词和过度宣传,我们距离实现 5 级完全自主驾驶的距离可能比我们想象中要远,但在过去几年时间里,AI 已经取得了显著的进步,其中包括如何训练它们或者说让它们如何训练自己。在物理世界四处奔波收集数据的这种模式已经开始被虚拟培训模式所取代。2017 年优秀文章之一就是 Atlantic 的《Inside Waymo's Secret World for Training Self-Driving Cars》,其中介绍了 Waymo自动驾驶汽车是怎样做到在现实世界只跑了几百万英里,而在一个定制的模拟、虚拟世界却跑了几十亿英里的内容。

  在企业和工业物联网世界中,机器学习和AI 也已经成为关键课题。企业和工业物联网产品不像他们的消费级物联网胞弟那样,需要收集足够的数据实现真正有意义的 AI,才能取得商业上的巨大成功。企业和工业物联网产品可以利用行业客户的数据,而许多机器、装配线和石油钻塔本身早就配备了成千上万个传感器。当然,这其中的障碍还是很多,有技术上的障碍(数据经常会被“困住”,难以提取),也有文化上的障碍(从几十年的小样本统计分析过渡到一种新的软件驱动分析方法,一旦失败,可能会导致灾难性结果)。而 AI 可能会是完全改变这些行业游戏规则的技术所在。

  除了上述所提到的例子之外,AI 也被广泛应用于其他各个领域,从垂直农业应用跨越到边缘计算等基础设施。

  值得一提的是,除了 AI 之外,材料科学、基因组学和纳米技术等领域(这些领域目前也在经历着自身的快速发展)的进步也让物联网有所受益。